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On the Horizon From the ORS

Targeting Osteogenesis-Angiogenesis
Coupling for Bone Repair

n estimated 6 million long

bone fractures occur in the
United States each year,! and up to
10% of these fractures result in
delayed union or nonunion.?
Although volumetric bone loss and/
or inadequate progenitor cell num-
bers are common causes of non-
union, the most common defining
feature of nonunion is impaired vas-
cularization.? The current standard
of care for fracture nonunion consists
of bone grafting and/or distraction
osteogenesis; however, limited avail-
ability of graft material, pain with
graft harvest and distraction,
and poor angiogenesis represent sig-
nificant limitations of these treatment
options. Thus, strategies to enhance
angiogenesis and subsequent osteo-
genesis in these most severe cases
are urgently needed. Here we discuss
osteoprogenitor-endothelial  cell
crosstalk in bone healing and outline
strategies for targeting osteogenesis-
angiogenesis coupling for the pre-
vention and management of delayed
healing and fracture nonunion.

Osteoprogenitor—
Endothelial Cell Crosstalk

During development and in adult-
hood, osteoprogenitor cells (OPCs)
co-localize with endothelial cells
(ECs) in the perivascular niche.**
During fracture repair, OPCs invade
the injury site with newly forming
vasculature,® which suggests the
existence of a functional codepen-
dency between OPCs and ECs via
cell-cell contact and paracrine sig-
naling. ECs exert control over os-
teogenesis by expressing a variety of
factors that regulate OPC survival,

proliferation, and differentiation,
including bone morphogenetic pro-
tein (BMP)-2 and -4, Wnt5a, and
Notch signaling.” Early committed
osteoblasts are primarily associated
with vessels that highly express
CD31 and endomucin; these vessels,
which are also referred to as type H
vessels, are predominantly located
below the growth plate and adjacent
to the endosteum in the diaphysis of
long bone.’ The number of type H
vessels decreases with age, with a
corresponding reduction in OPCs,?
which may partially explain the
reduced healing capacity of aged
bone. Although these data suggest
that the vascular niche has a role in
nurturing osteogenic cells, osteo-
lineage cells at all stages of differen-
tiation  express  pro-angiogenic
factors, including hypoxia-inducible
factor-a,’  vascular  endothelial
growth factor,'® BMP-2,'" and
C-X-C motif chemokine ligand 12
(CXCL12),'2 a chemokine involved
in stem cell recruitment and differ-
entiation. Our work shows that
osteoprogenitor cells regulate EC
migration, angiogenic sprouting, and
tubule formation,'® and our unpub-
lished data suggest that release of
CXCL12 from osteolineage cells
regulates angiogenesis during frac-
ture repair. Ongoing clinical trials are
investigating the effects of targeting
CXCL12 signaling in conditions such
as diabetes and cardiovascular dis-
ease, but none has yet focused on
bone regeneration.

Targeting Osteogenesis-
Angiogenesis Coupling

In animal studies, exogenous vas-
cular endothelial growth factor
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(VEGF) treatment has been shown
to enhance osteogenesis at low
doses'* and to disrupt osteogenesis
at high doses as the result of
abnormal angiogenesis and vascular
structure.’® Delivery of CXCL12
and VEGF enhanced recruitment of
endothelial progenitors in a hind-
limb ischemia model,’® and fat
grafts expressing CXCL12 and
BMP-2 enhanced mesenchymal
stem cell recruitment to a critical-
sized femoral defect in a murine
model.'’” More recent delivery
strategies have focused on sus-
tained release of osteogenic and
angiogenic factors at physiologic
levels. For example, fibrin matrices
with highly tunable release of
VEGF ¢4 showed significant func-
tional improvement of hindlimb
ischemia (P < 0.01).18 In another
approach, three-dimensional-printed
B-tricalcium  phosphate/calcium
silicate scaffolds pre-seeded with
human umbilical cord vein endo-
thelial cells and human bone mar-
row stromal cells stimulated robust
angiogenesis and osteogenesis in
an ectopic bone formation model.'®
Most recently, collagen-based
scaffolds with host cell BMP-2
and VEGF transfection capabil-
ities showed significantly enhanced
vessel formation and repair of
critical-sized calvarial defects (P <
0.001).20 Mechanical loading is
a robust modulator of bone
repair,?22 and there is evidence
that its effects are exerted, in part,
through regulation of angiogene-
sis.!3:23.2% Exogenous mechanical
loading during the bone matrix
formation phase results in increased
bone volume and induces vascular
remodeling, resulting in decreased
vessel number and connectivity
and increased vessel thickness.
This effect may be mediated
through the release of mechano-
sensitive paracrine factors from
ECs, neighboring cells,”® and the
hematoma.?®

Summary

The concurrent induction of osteo-
genesis and angiogenesis using three-
dimensional constructs with gene
activation capabilities, controlled mi-
croarchitecture, and highly tunable
protein release profiles is being vali-
dated in preclinical animal models.
Many of these approaches target
endothelial and osteogenic cell cou-
pling through regulation of VEGF,
BMP, and CXCL12 signaling. Os-
teogenesis and angiogenesis are both
highly sensitive to mechanical signals,
and new approaches must also take
into account the mechanical environ-
ment at both the macro level (in the
form of tissue deformation) and the
micro level (in terms of scaffold stiff-
ness).?” Typically, intramedullary
fixation is chosen for reconstruction
of critical-sized defects because it
allows early weight bearing and
increased callus formation. However,
additional studies are needed to reveal
how mechanical signals regulate
osteogenesis-angiogenesis coupling at
the cellular and molecular levels.
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