
On the Horizon From the ORS

Biophysics Rules the Cell Culture but Has
Yet to Reach the Clinic: Why Is That?
Musculoskeletal injuries are the
leading cause of physical disability
worldwide, with associated annual
direct and indirect healthcare expen-
diture in excess of $874 billion in the
United States alone.1 Current treat-
ments are predominantly based on
tissue grafts (autografts are pre-
ferred)2,3 and biomaterials.4,5 Given
that the former are associated with
scarce availability, insufficient re-
modeling, and adverse immune
reactions,6-8 and the latter with
substandard stability, poor biologic
response, and foreign body
response,9-11 their clinical suitability
has been questioned and gave rise to
the field of cell-based therapies.12

Cell-based therapies advocate that
optimal repair and regeneration can
be achieved through the utilization of
the intrinsic capacity of cells to build
native supramolecular assemblies;
cells are thenaturalbornextracellular
matrix (ECM) builders, after all.
Unfortunately, cell-based therapies
require in vitro cell expansion in
artificial tissue culture media and
plastics. Removed from their optimal
tissue niche, cells lose their pheno-
type, function, and therapeutic
potency.13,14 Thus, contemporary
tissue engineering incorporates high
levels of biomimicry in the design of
functional and physiologically rele-
vant in vitro microenvironments to
recapitulate ex vivo, insofar as pos-
sible, the complexity of the in vivo
tissue context of the cells. Here, we
briefly discuss recent advancements
in biophysical aspects of cell culture
systems and whether these develop-
ments have influenced clinical
translation and commercialization of
cell-based therapies in the musculo-
skeletal space.

Biophysics and dynamics (in the
form of architectural, geometrical,
dimensional, and topographical fea-
tures; biomechanical properties, such
as elastic modulus and shear forces
and cyclic strains; and localized den-
sity) are ubiquitous in nature and
determine cell and tissue specificity
and function.15,16 For example,
tendons are composed of highly
ordered, bidirectionally aligned col-
lagen fibrils (up to 100 nm to 1,000
nm in diameter), which, bundled
together, form collagen fibers (1 mm
to 20 mm in diameter) and collagen
fiber bundles (20 mm to 500 mm in
diameter).17 Bone exhibits a radial
gradient porous structure from the
outside: the cortical bone has outer
porosity of approximately 5%,while
the inner part can reach porosity up
to approximately 10%; porosity of
the cancellous bone starts at
approximately 50% in the outer
layer and can reach approximately
90% in the inner layer.18 Articular
cartilage has a zonal architecture,
and the organization and alignment
of the collagen fibrils/fibers is dif-
ferent in every zone (eg, parallel,
perpendicular, diagonal, radial).19

Advancements in engineering have
made available numerous nano- and
microfabrication technologies (eg,
electrospinning, imprinting) that
have enabled control of permanently
differentiated cells and stemcells.20,21

For example, electrospun and/or
imprinted substrates have been
shown not only to maintain teno-
cyte,22,23 chondrocyte,24 and osteo-
blast25 phenotype, but also to direct
stem cells toward tenogenic,26

chondrogenic,27 and osteogenic28

lineages. The term durotaxis is used
to describe the ability of cells to
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migrate directionally toward areas of
high ECM rigidity. ECM elasticity/
mechanical compliance governs
numerous in vivo biologic processes,
including cellular spreading, migra-
tion, and differentiation; morphogen-
esis; wound healing; and disease
progression.29,30 In the last decade,
numerous in vitro studies have dem-
onstrated the positive influence of
substrate rigidity in tendon-,31 carti-
lage-,32 and bone-derived33 cell phe-
notype maintenance and in stem cell
differentiation toward tenogenic,34

chondrogenic,35 and osteogenic36

lineages. Static or dynamic uniaxial or
multiaxial tensile, compressive, or
shear mechanical loads are also crucial
for the development, function, and
healing of musculoekeltal tissues.37,38

It is not a coincidence, after all, that
exercise is an integral element of any
orthopaedic rehabilitation regime.39,40

Several bioreactor systems of variable
complexity have been used as means
to control tenocyte,41 chondrocyte,42

and osteoblast43 phenotype in vitro
and to direct stem cells toward teno-
genic,44 chondrogenic,45 and osteo-
genic46,47 lineages. Musculoskeletal
tissues, like any other tissue, are highly
dense ECM assemblies. Yet again,
traditional cultures are conducted in
dilute culturemedia that barely imitate
the density of body fluids, let alone
compact tissues.
To emulate this dense ECM micro-

environment in vitro, macromolecular
crowding, also known as localized
density or excluding volume effect, has
been proposed and has been shown to
substantially modulate nuclear pro-

cesses, suchas gene transcription,RNA
splicing and DNA replication, and
protein properties, such as diffusion
coefficients, folding kinetics, and ther-
modynamic activities, both intracellu-
larly and extracellularly.48,49 In vitro
data have shown macromolecular
crowding to maintain tenocyte and
osteoblast phenotype50 and to enhance
chondrogenesis in stem cell culture.51

Despite the significant volume of
work in the in vitro setting, only a
handful of studies have assessed in
preclinical models the influence of
mechanical preconditioning in tissue
regeneration. However, in all cases,
the cells were seeded into/onto a
scaffold, the cell/scaffold system was
subjected to mechanical loading
in vitro for a period of time, and then
the cell/scaffold system was im-
planted.52 To date, no study has
assessed in preclinical models or in a
clinical setting the influence of sur-
face topography, substrate rigidity,
mechanical stimulation, or macro-
molecular crowding preconditioning
in permanently differentiated or stem
cell–only implantation. What has
hampered preclinical/clinical trans-
lation and commercialization of
these game-changing technologies?
Financial issues may be the first

reason. There are only a few compa-
nies that manufacture bioreactor
systems with the capacity to apply
loads, and the systems available are
not only far too expensive, but they
also have limited capacity for cell
expansion. Reproducibility issues
may be the second reason. Although
electrospinning is widely available in

the laboratory setting, only a handful
of companies have industrialized the
process, and it is still challenging to
control precisely the dimensionality
of electrospunmats. Scalability issues
may be the third reason. Although
imprinting has solved the problem of
reproducible scaffold dimensionality,
we are still far away from producing
economically the likely trillions of
imprinted cell culture substrates
required per year to expand cells for
education, research, development,
and clinical purposes.
Lack of sufficient evidence may be

the fourth reason. Although macro-
molecular crowding has been avail-
able since the 1980s, only a handful
of studies have assessed its potential
in cell culture context. Standardiza-
tion may be the fifth reason. Rarely
will one find published papers re-
porting that authors extracted the
cells in the same fashion, used the
same media, applied the same pre-
conditioning conditions, and con-
ducted the same analysis. Regulatory
issues may be the sixth reason.
Most of the scaffold-based surface
topography/substrate rigidity exper-
iments are performed using non-FDA
approved polymers.
Undeniably, the cell culture market

is growing exponentially; it is ex-
pected to worth $18.63 billion by
202053 and $37 billion by 2022.54

Unless a disruptive innovation comes
along, it is likely that functional
reparative therapies will involve the
delivery of a relevant cell population
that has been expanded in vitro.
It is therefore imperative to direct
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our efforts toward the creation of
physiologically/clinically relevant,
industrially scalable, and regulatory
compliant in vitro microenviron-
ments in order to develop in the
years to come remedial patient bed-
side cell-based therapies.
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